

5.1 (a) Let $X \in \Gamma(\mathcal{M})$ be a *Killing vector field* on the Riemannian manifold (\mathcal{M}, g) . Show that, for any $V, W \in \Gamma(\mathcal{M})$,

$$g(\nabla_V X, W) + g(\nabla_W X, V) = 0,$$

where ∇ is the Levi-Civita connection of g (*Hint: Compute the derivative $X(g(V, W))$ in two ways, once viewing it as a Lie derivative and another using the connection*). Deduce that, if $\gamma : (a, b) \rightarrow \mathcal{M}$ is a geodesic of (\mathcal{M}, g) , then the function $t \rightarrow g(X|_{\gamma(t)}, \dot{\gamma})$ is constant for $t \in (a, b)$

Remark. Any function $F : T\mathcal{M} \rightarrow \mathbb{R}$ such that $F(\gamma(t), \dot{\gamma}(t))$ is constant when γ is a geodesic is called a *constant of motion* for the geodesic flow.

(b) Let $\zeta : (-1, 1) \rightarrow \mathbb{R}^2$, $\zeta(u) = (x(u), y(u))$ be a smooth curve parametrized with *unit speed* and contained in the upper half plane, i.e. $y(u) > 0$ for all $u \in (-1, 1)$. Let S be the *surface of revolution* in \mathbb{R}^3 obtained by rotating the curve ζ around the x -axis, i.e. S is parametrized by the map $\Psi : (-1, 1) \times [0, 2\pi) \rightarrow S$,

$$\Psi(u, \varphi) = (x(u), y(u) \cos(\varphi), y(u) \sin(\varphi)).$$

Let also g be the metric induced on S by the Euclidean metric g_E in \mathbb{R}^3 . Show that the vector field $\Phi = \frac{\partial}{\partial \varphi}$ is a Killing vector field on (S, g) . Find a closed formula for any geodesic $\gamma : (-T, T) \rightarrow (S, g)$, $t \rightarrow (u(t), \varphi(t))$ (*Hint: Use the fact that $g(\dot{\gamma}, \Phi)$ and $g(\dot{\gamma}, \dot{\gamma})$ are conserved along γ to obtain a simple expression for $\dot{\gamma} = (\frac{du}{dt}, \frac{d\varphi}{dt})$.*

5.2 The *Poincaré half-plane* is the domain $\mathbb{H}^2 = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ in \mathbb{R}^2 equipped with the Riemannian metric

$$g_{\mathbb{H}} = \frac{dx^2 + dy^2}{y^2}.$$

(a) Setting $z = x + iy$, show that the map $f : \mathbb{H}^2 \rightarrow \mathbb{H}^2$ defined by

$$f(z) = \frac{az + b}{cz + d}$$

for $a, b, c, d \in \mathbb{R}$ with $ad - bc > 0$ is an *isometry* for $g_{\mathbb{H}}$.

(b) Show that the geodesic equation for $g_{\mathbb{H}}$ takes the form

$$\ddot{x} = \frac{2\dot{x}\dot{y}}{y}, \quad \ddot{y} = \frac{\dot{y}^2 - \dot{x}^2}{y}.$$

(c) Show that $\frac{\dot{x}^2 + \dot{y}^2}{y^2}$ and $\frac{\dot{x}}{y^2}$ are constant along a geodesic (i.e. are constants of motion for the geodesic flow). Is the conserved quantity $\frac{\dot{x}}{y^2}$ a constant of motion associated to a Killing vector field of $(\mathbb{H}^2, g_{\mathbb{H}})$, in the spirit of Exercise 5.1? What is the shape of a geodesic curve in $(\mathbb{H}^2, g_{\mathbb{H}})$?

Remark. The *Poincaré half-plane* is a model for the *hyperbolic plane*.

5.3 Let (\mathcal{M}^n, g) be a smooth Riemannian manifold and let $\gamma : [0, 1] \rightarrow \mathcal{M}$ be a geodesic.

- (a) Show that there exist a set of vector fields $\{E_i\}_{i=1}^n$ defined along the curve γ satisfying all of the following conditions:
 - o For any $t \in [0, 1]$, the tangent vectors $\{E_i|_{\gamma(t)}\}_{i=1}^n$ at $\gamma(t)$ form an orthonormal basis of $T_{\gamma(t)}\mathcal{M}$.
 - o $E_1|_{\gamma(t)}$ is parallel to $\dot{\gamma}(t)$.
 - o The vector fields E_i are parallel translated along γ , i.e. $\nabla_{\dot{\gamma}} E_i = 0$, $i = 1, \dots, n$.
- (b) Show that, if $\{E_i\}_{i=1}^n$ is a set of vector fields along γ as above and X is any other vector field along γ , then X is parallel-translated along γ if and only if the components of $X|_{\gamma(t)}$ in the basis $\{E_i|_{\gamma(t)}\}_{i=1}^n$ of $T_{\gamma(t)}\mathcal{M}$ are constant as functions of t .

5.4 Let $\Omega \subset \mathbb{R}^n$ be an open domain and let $\Psi : \Omega \rightarrow \mathbb{R}^N$ ($N > n$) be a smooth immersion; let also g be the Riemannian metric induced on Ω by the Euclidean metric g_E on \mathbb{R}^N . Recall that, for any point $p \in \Omega$ and any local coordinate system (x^1, \dots, x^n) around p , the tangent space $T_{\Psi(p)}\Psi(\Omega)$ of the submanifold $\Psi(\Omega) \subset \mathbb{R}^N$ (i.e. the image of the map $d\Psi_p : T_p\Omega \rightarrow T_{\Psi(p)}\mathbb{R}^N$) is spanned by the vectors $\{\partial_i \Psi\}_{i=1}^n$. Let us denote with $\Pi_{\Psi(p)}^\top : T_{\Psi(p)}\mathbb{R}^N \rightarrow T_{\Psi(p)}\Psi(\Omega)$ the *orthogonal projection* with respect to the Euclidean inner product on $T_{\Psi(p)}\mathbb{R}^N$. Show that the Christoffel symbols of the Levi-Civita connection for g in the *Cartesian* coordinate system (x^1, \dots, x^n) on $\Omega \subset \mathbb{R}^n$ satisfy for any $p \in \Omega$:

$$\Pi_{\Psi(p)}^\top \left(\frac{\partial^2 \Psi}{\partial x^i \partial x^j}(p) \right) = \Gamma_{ij}^k(p) \partial_k \Psi(p).$$